- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Shichun (1)
-
Li, Min (1)
-
Shakespeare, Cody J (1)
-
Steffen, Jason H (1)
-
Zhu, Zhaohuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The initial stellar carbon-to-oxygen (C/O) ratio can have a large impact on the resulting condensed species present in the protoplanetary disk and, hence, the composition of the bodies and planets that form. The observed C/Os of stars can vary from 0.1–1. We use a sequential dust condensation model to examine the impact of the C/O on the composition of solids around a solar-like star. We utilize this model in a focused examination of the impact of varying the initial stellar C/O to isolate the effects of the C/O in the context of solar-like stars. We describe three different system types in our findings. The solar system falls into the silicate-dominant, low-C/O systems which end at a stellar C/O somewhere between 0.52 and 0.6. At C/Os between about 0.6 and 0.9, we have intermediate systems. Intermediate systems show a decrease in silicates while carbides begin to become significant. Carbide-dominant systems begin around a C/O of 0.9. Carbide-dominant systems exhibit high carbide surface densities at inner radii with comparable levels of carbides and silicates at outer radii. Our models show that changes between C/O = 0.8 and C/O = 1 are more significant than previous studies, that carbon can exceed 80% of the condensed mass, and that carbon condensation can be significant at radii up to 6 au.more » « lessFree, publicly-accessible full text available February 27, 2026
An official website of the United States government
